If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+8x-72=0
a = 2; b = 8; c = -72;
Δ = b2-4ac
Δ = 82-4·2·(-72)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{10}}{2*2}=\frac{-8-8\sqrt{10}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{10}}{2*2}=\frac{-8+8\sqrt{10}}{4} $
| 12x+41=89 | | 1/7^x=117649 | | 75=x+83 | | 104+x+57+x=180 | | -243=-90+(9x) | | 5d=10/12 | | 13-5=2x-8 | | 10+x=−64 | | 29h=319 | | -2(4x+10)=2(x+20) | | 8/3x+1/3x=11/2+5/3x | | -3b/2=9 | | 993=m+68 | | 2(3 | | -1/2x7=11 | | f+733=941 | | -10r-2=-22 | | c+45=78 | | 26+4x=182 | | 5-t/5=9 | | 2(3 | | 24=8g | | -1/2x77=11 | | -−30−6r=−36 | | n+1/2=13/4 | | 11r-3r=64 | | -550=5b | | 3/x=8400/1800 | | 1/2x+7=-8 | | 25x+32=360 | | 100=19x | | d-4=54 |